Review on the eigenvalue method for the system: x’= Ax, where A is a 2x2 matrix.

Constant Coeff. Homogeneous System: \

dx 3
Constant Coeff. Homogeneous: i Ax
Solution: X=c1¥1 +coRg+---,

where X, are fundamental solutions
from eigenvalues & eigenvectors.
The method is described as below.

The Eigenvalue Method for Homogeneous Systems:
The number A is called an eigenvalue of the matrix A if |A — AI| = 0.

An eigenvector associated with the eigenvalue A is a nonzero vector v such that
(A= MI)v=0.

We consider A to be 2 x 2, then the general solution is X(t) = ¢1X;(t) + c2Xa(t),
with the fundamental solutions X (t),X2(t) found has follows.
e Distinct Real Eigenvalues. X;(t) = V1e Mt Xo(t) = Voe?!

e Complex Eigenvalues. A1 2 = p+qi. (suggestion: use an example to remem-
ber the method)

If #=@+dbis an eigenvector associated with A = p + qi, then
X1 (t) = et (d’cos gt — bsin qt), % (t) = e (bcos gt + d@sin gt)
e Defective Eigenvalue with multiplicity 2.

Find nonzero v and v, such that (A — A\I)?V, = 0 and (A — AI)V, = V.
Then %, (t) = V1e*, Xa(t) = (Vit + Vo) e .
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5 3] . Find a general solution to the linear system x’ = Ax.

Example. Consider a2 x 2 matrix A = [
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Example Let x(¢) be the solution of the initial value problem

0= (7 j)x0. x0= ()

Whatis x(1)?
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Lecture 23. Nonhomogeneous Linear Systems

Given the nonhomogeneous first-order linear system
x' = Ax + £(t)

where A is an n X n constant matrix and the “nonhomogeneous term” f() is a given continuous vector-valued

function.
A general solution of Eq (1) has the form

x(t) = x(t) + %, (1),

where
o x. = c1x1(t) + caxa(t) + - - - + cuxp(t) is a general solution of the associated homogeneous system
x' = Ax,

o xp(t) is a single particular solution of the original nonhomogeneous system in (1).

Undetermined Coefficients

Example 1 Apply the method of undetermined coefficients to find a particular solution of the following system.

' =x+2y+3
Yy =2z+y—2

ANS: We oscume ir({): K for some  number 0, b
Y0 b
Then  we Fh\z\j Ahem into the 716%@'\,

=0 = a+)b +3 h+2b= -2 > 2t 4b=—6

E =0 = yotb> 200+b =)

D3b=-8 > b=- % ﬂten 0L:~3~ll>:‘31'—/3’(:- :_%

/

1
Thus e have ?f =



t

Recall that if we want to find z,,(¢) for the equation z" —x = €', we assume Ty = atet since el is a solution

for the homogeneous equation "/ — z = 0.
Similarly, in general cases, we need to check the solution for X, for the homogeneous equation x’ = Ax.

For example,

Example 2 Apply the method of undetermined coefficients to find a particular solution of the following system.
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To write down the general solution to this nonhomogeneous equation, we apply the usual steps of solving the

homogeneous system:

1 2
2 1

!
X =

(
)

1 2

The eigenvalue and eigenvector for A = (2 1

Therefore, the general solution to the given system is

)=

1
I

— 1l
i

oo ()
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Further directions on solving nonhomogenous linear systems

Similar to Lecture 14 on solving Nonhomogeneous Equations of Second Order, there is a version of the method
of variation of parameters in solving nonhomogenous linear systems of the following form:

x' = P(t)x + g(t)

We will refer to the section 7.9 in the book by Boyce, DiPrima and Meade for this topic.



